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components are obtained by correlating Q,(nT) with X,(nT)
and with Y,(nT).

If alternate switched transmission is used for measuring
the polarimetric variables and reception of the copolar
H,(2nT), V(2nT+T), and cross-polar components Q,(2nT),
Q.(20T+T) is made then all these signals are whitened in
range first and then the usual processing in time (as set forth
in Doviak and Zrnic’s book entitled “Doppler Radar and
Weather Observations”, 1993) is made. This entails either
averaging the spectrum estimates or various autocovariance
estimates in range from which the spectral moments are
obtained. For example, to obtain the linear depolarization
ratio (LDR) one first whitens the cross polar signal Q,(2nT)
in range; then the average in range and time produces the
power estimate P,,. By definition LDR=P /P,, where P, is
now obtained from the whitened horizontally polarized
signals X, (20T). The multipliers in the argument, 2n and
2n+1, distinguish between the two interlaced sequences of
transmitted orthogonal polarization states (i. e., vertical and
horizontal).

To construct the whitening matrix W the following pro-
cedures are used. In general the orthogonalization is not
unique and many well-known methods could be applied to
generate different whitened sequences. The present inven-
tion pertains to the specific applications of a whitening
scheme on pulsed active remote sensors, such as weather
radars, lidars, sodars, blood flow meters, etc., when incor-
porated into the receivers of these sensors the scheme
produces superior estimates of the spectrum, its moments,
and polarimetric variables if applicable. Two prominent
methods to generate whitened sequences are the eigenvalue
decomposition (see the C. W. Therrien 1992 reference
publication entitled “Discrete Random Signal And Statisti-
cal Signal Processing” published by Prentice Hall, Engle-
wood cliffs, N.J., on page 727, sections 2.6 and 2.7) and the
triangular or Gram-Schmidt orthogonalization decomposi-
tion as described, for example, in the 1984 reference pub-
lication of A. Papoulis, entitled “Probability, Random
Variable, and Stochastic Processes, second Edition,
McGraw-Hill, Singapore, page 576, section 13.1.

In the eigenvalue decomposition method first the eigen-
values A, of the correlation matrix C are computed and C is
represented as

c=U" LU, amn
where L is a diagonal matrix of eigenvalues, U is the unitary
transformation matrix whose columns are eigenvectors of C,
and the superscript t signifies the transpose. Then to obtain
W a diagonal matrix D with elements on the diagonal equal
to 2, is constructed and

W=H'=D U"". (12)

Triangular or Cholesky decomposition is identical to the
Gram-Schmidt orthogonalization (see above publication by
Papoulis, 1984). The matrix H is a lower triangular matrix.
Hence the whitening matrix (equation (5)) is also lower
triangular. A possible advantage of triangular H matrices is
that whitening can proceed in a pipeline manner, that is
computations can start as soon as the first sample is taken
and progress through subsequent samples. Non-triangular H
matrices require presence of all data before computations
can start.

Simulation of the process starting with the slab signal s,,
their superposition as in equation (2) and subsequent whit-
ening in range has been made. A pair of such complex
signals is simulated with appropriate powers and cross
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correlations to represent orthogonal linear polarized echoes.
A Doppler spectrum with Gaussian shape is imposed. The
standard deviations and mean values of estimates are in
FIGS. 4(a)—(c) and 5(a)—(c). FIGS. 4(a)~(c) are standard
deviations of spectral moment estimates. In FIG. 4(a) a
standard deviation of power, the mean Doppler velocity is
shown in FIG. 4(b), and the Doppler spectrum width is
shown in the FIG. 4(c) graph. These graphs were obtained
by simulating correlated range samples and applying both
traditional (thin lines) and proposed (thick lines) processing.
M is the number of time samples (separated by T seconds)
which are used to compute the Doppler spectrum and its
moments. L is the over sampling factor, i.e., the number of
range samples that are used to reduce the standard error of
estimates. The simulation results were obtained from 1000
realizations. For clarity, lines connect the simulation results
(circles at SNR increments of 3 dB). In FIG. 5(a)—(c) are
graphs of the mean values of spectral moment estimates. In
FIG. 5(a), the top graph is the mean of power, the mean
Doppler velocity is shown in FIG. 5(b), and the Doppler
spectrum width is shown in the bottom graph, FIG. 5(c).
These graphs were obtained by simulating correlated range
samples and applying both traditional (thin lines), and the
proposed (thick lines) new processing. The imposed spec-
trum width is 4 m s~ the unambiguous velocity is 32 m s,
the over sampling is by a factor of 10, and the dwell time is
32T s. Comparison of results obtained with standard and
proposed processing as a function of SNR demonstrates that
for this particular set of parameters (at large SNR) the
reduction in standard errors is more than two times (FIGS.
4a))).

The correlation of samples in range is influenced by both
the receiver filter and the transmitted pulse shape. For a filter
with an impulse response h,, the composite (equivalent)
correlation becomes (see publication of Papoulis, 1984)

Co'=Con Ty 13

where the correlation due to transmitted pulse (which need
not be rectangular) is ¢,,,, and m is lag in range. This equation
can be rewritten in an alternate form as

(14

where the equivalent “pulse” weighting function is p,°=
p.h,. Thus p,° is a convolution of the pulse envelope with
the receiver impulse response. A simple way to obtain this
is to attenuate the transmitted pulse, inject it into the receiver
and over sample the output. Substituting the equivalent
pulse p,* into equation (3) produces c,,,; this is done once for
a fixed pulse shape and receiver bandwidth. Whitening of
the range samples can now be accomplished following the
previously described procedure.

Alternate whitening procedures are also possible. An
alternate way to produce spectral moment and polarimetric
variable estimates using a whitening transformation is now
discussed. As mention above, variables of interest are
obtained from time series (I, Q) data by an intermediate step
involving either correlation or spectral methods. It is pos-
sible then to move the whitening transformation one step
further in the processing chain.

The modified procedure starts by computing spectral
coefficients along sample-time for each set of over sampled
data. After computing spectral coefficients, the spectrum
peak can be found and only a few spectral components
around this peak are needed to determine reflectivity, Dop-



